
SANS FOR610 | Reverse-Engineering Malware:
Malware Analysis Tools and Techniques

This is my notebook for the SANS FOR610 course in preparation for the GIAC GREM exam. The
SANS FOR610 course covers both core reverse-engineering topics and in-depth malware analysis
techniques. This notebook should be useful for anyone else looking to break into the world of
reverse-engineering malware.

The reverse engineering toolkit used for the course can be found on my Google Drive here:

https://drive.google.com/open?id=1MiH0sAbPP_gZPUa7ej6HUhiKQ-9dWId1

The malware specimens are compressed and encrypted. The password to decrypt and
decompress specimens is:

malware

You can also download and find the documentation for the REMnux reverse-engineering toolkit
at:

https://remnux.org

Please feel free to let me know if there are any errors in the Markdown notes provided, or if
information contained within is invalid or incorrect.



FOR610.1: Malware Analysis Fundamentals

Introduction to Malware Analysis

Modern malware is used to remotely control the compromised system, spread within the
organization, exfiltrate sensitive documents, spy on the victim, etc.

Stages of Malware Analysis

Fully automated analysis - used to quickly assess what the specimen might do if it ran on a
system; produces reports showing mutexes, registry keys, network traffic, etc.
Static properties analysis - analysts review the metadata of a malware specimen; reviewing
strings of an embedded file, overall structure of the specimen, header data; without
running the actual program
Interactive behavior analysis
Manual code reversing

Malware analysts need to communicate with other actors within the organization effectively to
triage, enumerate, catalog, and protect the organization from malware. Malware analysts need to
receive inputs from other security professionals such as:

verbal reports
suspicious files
file system images
memory images
network logs
anomaly observations

and malware analysts must output to the community and the organization formatted reports for
the community to digest. These reports can encompass:

what a specific malware specimen does
how to identify a malware specimen
attacker's profile
IR recommendations
reports and indicators of compromise (IOC)s
malware trends

What to include in a malware analysis report

Summary of the analysis - executive summary; key takeaways; malware specimen nature,
origin, capabilities, and other relevant capabilities
Identification - type of file, name, size, sha256sum, and current antivirus detection
capabilities



Characteristics - capabilities for infecting files, self-preservation, spreading, leaking data,
interacting with the attacker, etc.
Dependencies - resources required for the malware specimen to operate; supported OS
versions, .dlls, .exe, URLs, and scripts
Behavioral and code analysis findings - overview of the specimen behavior; static and
dynamic analysis observations
Supporting figures - logs, screenshots, string excerpts, functions listings, and other exhibits
that support the analysis
Incident recommendations - indicators for detecting the specimen on other systems and
networks, and possible eradication steps

Running strings and googling hashes, resources, etc. identified being used by a malware
specimen is called Open-source intelligence (OSINT). Using tools to visit suspicious URLs,
searching for IOCs in databases, and following the location of where the malware specimen
beacons to are parts of OSINT - all available on the internet.

Network traffic used by malware

Beaconing - sending brief periodic messages to the adversary with basic information about
the state of the malicious program and its infected host
Command and control - obtaining instructions from the attacker via the network
Exfiltration - sending stolen files or data (such as keystrokes) over the network back to the
attacker

When utilizing OSINT, be hesitant to upload files to a third party that seem suspicious and might
not be captured in a database, yet. This might tip off the attacker that they have been discovered.
Sending hashes for review is acceptable, but unless the virus seems well known, use discretion.

Malware Analysis Lab

Despite all of the open-source tools available, sometimes your organization will require you to
keep a breach under wraps. Also, the malware you have encountered might not have been
discovered, yet. There might not be any OSINT available related to your particular infection.

In order to closely study the malware on your own, execute it and record its behavior, controls its
resources, and prevent it from infecting other victims, you must construct a lab environment.

The malware analysis should comprise multiple systems networked together, and you should
have a mix of Windows and Linux operating systems. In this class, we will be analyzing malware
that targets Windows, however, Linux can provide the network services that the malware might
be expecting.

You should pay attention to your lab isolation measures. There is still risk associated with running
the malware within a virtual machine. Especially sophisticated malware specimens can attempt to
escape virtual machines or utilize resources provided (such as the network or shared file systems)



to infect other portions of the lab environment or the host machine, itself.

Precautions one should take for lab isolation:

Keep up with security patches for your virtualization software
Don't use lab systems for other purposes
Disconnect the lab from other networks
Disable risky capabilities, such as folder sharing

Malware might also try to determine if its being analyzed. It will attempt to detect virtualization,
debuggers, monitoring and analysis tools and attempt to obfuscate its code or fool analysts. It is
also possible for it to interfere with analysis tools, terminate its execution, or just exhibit different
characteristics entirely.

At the end of the day, you might need a physical system to run a particular piece of malware.
Ensure to use tools such as dd, ddp, clonezilla, or pxe for reverting back to the last-known-
good physical state of a machine.

The lab should include tools that can examine the specimen statically and dynamically from
several vantage points.

Here is a listing of some important tools for static analysis:

PeStudio
strings
CFF Explorer
peframe
Detect It Easy
HxD

Here is a listing of some important tools for behavioral analysis:

Process Hacker
Process Monitor
RegShot
Wireshark
fakedns
TcpLogView

Here is a listing of some important tools for code analysis:

IDA
x64dbg / x32dbg
OllyDumpEx
jmp2it
Scylla



Static Properties Analysis

Before conducting behavioral analysis of a malware specimen, it's best to start with reviewing the
static properties of the suspicious file.

The things we should be looking for are:

file and section hashes
packer identification
embedded resources
imports and exports
crypto references
digital certificates
"interesting strings"

This will help us answer these questions:

Is it malware?
How bad is it?
How to detect it?
How to analyze it?

Multiple different static analysis tools exist to extract ASCII and Unicode strings from a file. This
allows the analysts the ability to make inferences on the nature of a particular specimen. Usually
you can draw the registry keys, mutants, User-Agents, and network locations being called out to
via strings.

There exist multiple different software packages for static analysis of specimens as well. These
packages can outline the .data, .rsrc, .text, and .reloc portions of a portable executable and
provide an determination about their possible maliciousness. You should be on the lookout for
specific API calls that could be used to indicate malicious behavior.

There are also tools to detect if a specimen has been packed. These tools can identify the packer
used to create a specific piece of malware and extract the original program from the data portion
of the packed malware.

Behavioral Analysis Essentials

Several tools for Windows exist in order to allow analysts to capture how a piece of malware
behavior when executed. Here a list of some of the tools used in this section of the class:

Process Hacker
Process Monitor
Regshot
ProcDOT



Wireshark

In the exercise for this section, we run brbbot.exe as Administrator in order to observe its
behavior. We run Process Monitor and Process Hacker to record the specimen's actions,
Regshot to take a snapshot of the registry prior to running brbbot.exe, and Wireshark on the
upstream Linux host in order to record the network traffic brbbot.exe generates.

NOTE: It's best not to run Wireshark on the host that you plan to run a malware specimen on. The
malware specimen could use this to detect if it's being observed.

In this exercise brbbot.exe was unable to resolve a hostname, presumably its callback location,
and so thus it exited execution. In order to trick specimens into thinking they have internet
connectivity, we can use a tool like fakedns. This tool will response to a specimen's DNS requests
and provided it fake name resolution.

Code Analysis Essentials

IDA/IDAPro, x64/32dbg. Using x64dbg, set breakpoints for interesting API calls using the
command-line command SetBPX. You can view handles of a malware specimen using the
handles tab of x64dbg, or you can view the handles using Process Hacker.

For 64-bit architectures, according to Window's documentation, the pointers and integers being
passed to a Windows API call will be located in the rcx, rdx, r8, and r9 registers - in that order.

Another effective way of watching a process execute suspicious API calls is by using API
Monitor. API Monitor is a free tool in which you can specify which Windows API calls to trigger
on for a specific process. You can attach API Monitor to a running process, or execute the
specimen with API Monitor.

Interactive Behavioral Analysis

In this exercise we have an encoded hex file that seems to be XOR'd with the value 5b. In order to
return this file back into binary so that we can XOR each bit, we use the -r option for xxd to do
the reverse operation that xxd provides.

We have a tool on the REMnux distro called translate.py that is designed to conduct specified
bitwise operations on a file (XOR, ROR/ROL, etc).

In this exercise, there's a specimen, juice.exe that attempts to reach out to multiple hard-code
IP addresses, avoiding the use of hostname-resolution. This technique renders our use of
fakedns inert, thus we use iptables to create a PREROUTING rule that forwards all traffic to our
local ports. This is a great technique for making sure you capture all network traffic and forward it
to a network device for analysis.

Additional tools are available for intercepting and analyzing network connections:



TcpLogView
PE Capture
ApateDNS
FakeNet-NG

Class Notes

Tools to look at:

pestr - better than strings as strings only looks at ASCII text, however, pestr also views
Unicode strings and can filter for malicious patterns.
BinText - GUI tool to view embedded strings on a Windows OS.
strings2 - Windows command-line tool for viewing both ASCII and Unicode strings on
both static applications, as well as currently running processes.
PeStudio - static analysis of compiled C++ and flag anomalies in the binary.
gchq.github.io/CyberChef

Tools to look at:

CAPE Malware Analysis and Payload Extraction. (https://cape.contextis.com/analysis)
urlscan.io (allows you to scan a suspicious url found in malware)
any.run (cloud procured VMs for dynamic malware analysis)
rapid_env (https://github.com/adamkramer/rapid_env)

Rapid deployment of Windows environment (files, registry keys, mutex etc) to
facilitate malware analysis

threatconnect (freeware malware callback analysis)
intezer (genetic malware analysis)
packetflow
detectionlab (clong/detectionlab github)

Definitions

Malware - code that is used to perform malicious actions; designed to allow the attacker
to benefit at the victim's expense; malicious purposes
Open-source intelligence (OSINT) - information freely available about a specimen on the
internet; gathering information about a specimen using tools available online
Indicators of Compromise (IOC)s - specific signatures for a malware specimen that
indicates its existence on or infection of a system.



17. exeinfo PE another useful Windows tool for

determining what tools were used to

generate a PE specimen; examines the

header of the file

18. exfiltration sending stolen data, such as keystroke

logs, to the adversary

19. exiftool displays metadata embedded in various

file types

20. fakedns responds to all hostname resolution

queries and provides the IP address of

the reverse engineering virtual machine;

can be used to trick malware into

thinking it has network resources

21. fakenet-ng intercepts network traffic in the lab,

emulates common protocols, similar to

inetsim but runs on Windows

22. fiddler a tool that can intercept and

automatically generate responses to

HTTP and HTTPS requests - client-side

23. fully automated

analysis

used to quickly assess what the malware

specimen might do if it ran on a system;

produces reports showing mutexes,

registry keys, network traffic, etc.

24. handle in Windows, a handle is similar to a file

descriptor; a handle points to the actual

resource being used by a process

25. hopper a commercial disassembler and

decompiler that runs on OS X and Linux

26. IDA renowned disassembler for static code

analysis of binary executables

27. identification part of a formal malware analysis report;

type of file, name, size, hashes, and

antivirus detection capabilities

28. imports Windows uses this section of an

executable to determine which DLLs and

the functions implemented within them

(symbols or APIs) are necessary for a

program's execution.

29. incident

recommendations

part of a formal malware analysis report;

indicators for detecting the specimen on

other systems and networks and

possible steps for eradication

30. indicators of

compromise

(IOCs)

an artifact observed on a network or in

operating system that with high

confidence indicates a computer

intrusion; represents intrusion signature;

IDS can be tuned to watch for the

signature to prevent future compromise

1. affiliate id

(affid)

used to identify an infection campaign or

the entity that is distributing the malicious

program

2. apateDNS dns server for redirecting hostname

resolution requests; similar to fakedns but

runs on windows

3. beaconing sending brief, periodic messages to the

adversary with basic information about the

state of the malicious program and its

infected host

4. behavioral and

code analysis

findings

part of a formal malware analysis report;

overview of the analyst's behavioral, static,

and dynamic analysis observations

5. Binary Ninja a commercial disassembler that's

especially strong for automated analysis

tasks

6. BinText provides an interactive and flexible GUI for

examining embedded strings on Windows

7. botnet malware that "calls home" to a command

and control center for further instructions

after it infects a computer

8. characteristics part of a formal malware analysis report;

specimen's capabilities for infecting files,

self-preservation, spreading, leaking data,

interacting with the attacker, etc.

9. clonezilla disk cloning software enabling the analyst

to save the laboratory system's hard disk

image and then reapply it after completing

the analysis

10. command and

control

obtaining instructions from the adversary

regarding actions that the specimen needs

to perform

11. CryptDeriveKey indicates that the specimen leverages

Windows cryptographic capabilities

12. ddp (delta-

delta-patch)

used to create a patch from an existing dd

image and then re-apply it

13. dependencies part of a formal malware analysis report;

files and network resources related to the

specimen's functionality - supported OS

versions, required initialization files,

custom DLLs, executables, URLs, and

scripts

14. detect it easy a useful Windows tool for determining

what tools were used to generate the

specimen; examines the PE header

15. disassembling involves translating binary machine-level

instructions to human-readable assembly

code

16. dynamic code

analysis

involves examining the code at the

assembly level while running the program

610.1: Malware Analysis Fundamentals
Study online at quizlet.com/_7r5a5v



31. inetsim a tool used to emulate the common

protocols HTTPS, SMTP, FTP, POP3, TFTP,

and IRC; can be used to fool malware trying

to use more sophisticated measures of

reaching the internet

32. interactive

behavior

analysis

running the malware in a test environment;

providing the malware with resources at each

stage of its execution to see how it behaves

33. iptables powerful Linux-based firewall software; we

can use it to intercept and redirect network

connections

34. LoadLibraryW indicates that a specimen can load additional

DLLs during runtime

35. malware code that is used to perform malicious

actions, typically designed to allow the

attacker to benefit at the victim's expense

36. manual code

reversing

disassembly of a malware specimen to

determine, at the lowest level, how it is

intended to operate and how it behaves

37. MASTIFF extracts many details from various types of

malware; good for bulk review of many

samples

38. mutant sometimes referred to as a mutex, this serves

as a flag that programs can use to serialize

access to a resource; sometimes used by

malware to avoid reinfecting the host

39. open-source

intelligence

(OSINT)

gathering information from public data

sources

40. packing typically involves obfuscating, encrypting, or

encoding the original executable file to

create a new file that embeds the original

program as data; when the program runs the

original program is unpacked

41. patching editing compiled executables to prevent the

specimen from conducting a specific branch

of code execution

42. PE Capture records and captures local PE files that try to

run

43. peframe an open source tool to perform static

analysis on Portable Executable malware

and generic suspicious files

44. pescan and

portex

examine key aspects of Windows executable

files and identify anomalies

45. pescanner.py a PE analyzer written in python by the

authors of the Malware Analysts Cookbook

46. pestr Strings analysis tool on REMnux;

designed for extracting strings from

Windows executable files - obtains both

ASCII and Unicode-encoded strings

47. PeStudio Provides an analysis of the static

properties of a portable executable;

Windows tool; calculates various hash

values for indexing a specimen; outlines

indicators of malicious activity for a

specimen

48. pivoting looking for associations between known

attributes of the malicious program with

new characteristics

49. ProcDOT visualizes Process Monitor logs for easier

analysis

50. Process Hacker open-source tool; GUI designed to help

analysts monitor system resources, debug

software, and detect malware -

replacement for Task Manager

51. Process Monitor Sysinternal tool, shows real-time file

system, registry, and process/thread

activity - records all observed actions in

a log file

52. PXE (preboot

execution

environment)

Refers to a client that can boot from a

NIC. PXE-enabled clients include a NIC

and BIOS that can be configured to boot

from the NIC instead of a hard drive. It is

often used to allow clients to download

images.

53. r8 this is the third register passed to a

Windows API call

54. r9 this is the fourth register passed to a

Windows API call

55. radare2 open-source toolkit for Windows and

Linux, installed on REMnux

56. RCX this is the first register passed to a

Windows API call

57. rdx this is the second register passed to a

Windows API call

58. RegSetValueExA indicates that a specimen has the

capability to set registry values

59. Regshot highlights changes to the file system and

the registry

60. signsrch locates code used for crypto,

compression, and more

61. snapshot saving the state of the virtual machine in

order to revert back to a last-known-

good if the malware destroys the lab

environment



62. static code

analysis

involves using a disassembler to examine the program's code without actually executing it

63. static

properties

analysis

examining a malware specimen by reviewing its metadata; looking at strings, structure, and header data without

actually running the program

64. strings Tool present on most Linux distributions - by default only extracts ASCII-encoded strings; use --endcoding=-l to

extract Unicode strings; use the -a parameter to scan the whole file

65. strings2 Command-line tool for extracting strings on a Windows system; extracts both ASCII and Unicode strings; can

extract strings from a running process

66. summary of the

analysis

part of a formal malware analysis report in which the writer provides the key takeaways to the reader; specimen's

nature, origin, capabilities, and other relevant characteristics

67. supporting

figures

part of a formal malware analysis report; logs, screenshots, string excerpts, function listings, and other exhibits to

support the report

68. tcplogview maintains a historical log of local TCP connections, showing which process handled which connection

69. trid identifies the type of file you're trying to examine

70. viper manages the malware collection and extracts various static properties about the files

71. windbg powerful and free Windows debugger from Microsoft

72. Wireshark Application that captures and analyzes network packets

73. x64dbg /

x32dbg

open-source debugger for Windows

74. xxd tool used to dump binary files into readable hex



FOR610.2: Reversing Malicious Code

Core Reversing Concepts

While behavioral analysis is useful in initially determining the capabilities of a malware specimen,
code analysis will allow the analyst the ability to accurately examine all branches of execution and
provides a comprehensive view of all malicious functionality.

The primary disassembler we use for this course is IDA. IDA is a recursive traversal, interactive
disassembler - more accurate and thorough than disassemblers that conduct linear sweeps.

IDA uses a technology called FLIRT (Fast Library Identification and Recognition Technology)
to automatically identify common libraries used within an executable under analysis.

The Exports tab in IDA displays the entry point of executables or the locations of multiple
exported functions. The Imports Address Table (IAT) in IDA displays the APIs used by the
program that are contained in external libraries. Viewing the API calls that a malware specimen
uses can allow the analyst to infer the specimen's capabilities, functionality, and intent. Windows
malware often interacts with the registry to configure itself for persistence or store configuration
data - we should always investigate changes to the registry.

To find all of the instances of an API call in the disassembled code, double-click the API call in the
Imports Tab to travel to its location. Then right click the API call to find the option:

Jump to xref to operand...

Or you can press x on the keyboard to determine all cross-references of the API call in the
disassembled code.

In order to effectively reverse-engineer disassembled code, we need to understand how to read
assembly code effectively. You can find my definitions / flash cards for the different registers of
the Intel x86 architecture in the quizlet portion of this repo.

Direct memory addressing is pretty straight-forward. Also works with pointers to memory. IDA
usually shows the de-referencing of a pointer by annotating it as such:

_

Indirect memory addressing is a little more complicated. We calculate our effective memory
address by using some base register, an index and a scale, and then the displacement. Some
examples:

[eax] - access dynamically allocated memory using just the base register
[ebp + 0x10] - access data residing on the stack (base + displacement)
[eax + ebx * 8] - access an array with 8-byte structures (base + index * scale)



[eax + ebx + 0xC] - access fields of a two-dimensional array of structures (base + index
+ displacement)

When reverse-engineering a malware specimen, we must keep cognizant of the "code-data
duality" that exists in computing. When looking at information, we must take into context what
the data represents as code can be represented as raw data, and vice versa. This is how malware
can obfuscate and unpack itself so well - we won't know what the data represents until runtime.

IDA has the ability to change the current representation of values in the disassembled code. IDA
will display the hex values of constants being passed to API calls, however, after right-clicking a
value of interest, the analysts can request IDA to represent the value as a standard symbolic
constant. This will allow the analyst to choose from a list of matching symbolic constants, but
these constants are usually from a list of macros most likely defined in the header file included to
compile the target binary.

Subroutines within IDA are represented as such:

sub_location

You can view all of the function calls made by a particular subroutines by using this IDA feature:

Go to View > Open subviews > Function calls

Doing this can help an analysts navigate large subroutines as well as infer the purpose of the
current subroutine being reviewed.

Reversing Functions

We first begin with the function prologue and epilogue. This will help us understand what takes
place before and after a function is called, and how the subroutine has access to variables / data
required to complete its operations.

The function prologue occurs at the start of a function. Here, the function will allocate space for
variables, and save registers that will be reused in the function body. Function arguments get
pushed to the stack, and the stack pointer is saved for reference when the function is returned to
its caller.

The function epilogue occurs after the function is complete. The epilogue cleans up the stack and
restores the registers and the information they contained prior to calling the function.

The following are some good questions to ask yourself about any function you hope to reverse
engineer:

From how many locations is it called?
How many arguments does it take?
How many local variables does it use?
Which instructions comprise the prologue?



Which instructions comprise the epilogue?
What calling conventions does it use?

Final notes for this section:

The stack is used to store arguments and variables.
Understanding stack details explains how code can follow numerous branches but always
return successfully.
Calling conventions dictate how parameters are passed and how stack cleanup occurs.
Identifying the function prologue and epilogue is key to separating "administrative" code
from core functionality.

Control Flow In-Depth

If-Else statements in assembly, translated from C/C++, usually have an initial code block at the if
statement that must conduct a comparison between two values and issue a conditional jump
instruction. If an if statement fails to evaluate to true, the code will then issue an unconditional
jump to the second condition statement, else if. Finally, the an unconditional jump will be
issued to the else statement if all other statements fail to evaluate to true.

So we've been using the Imports table to infer the nature and capabilities of a malware specimen.
We can also determine the nature of a malware specimen by reviewing its strings. By default, IDA
shows the ASCII strings of a decompiled binary, however, we can more thoroughly review the
strings by including the UTF encoded strings as well. Do the following in IDA in order to view UTF
encoded strings:

View > Open subviews > Strings

Then modify the IDA configuration to include Unicode strings:

Right-click the IDA Strings window > click "Setup" > check the box for "Unicode C-style (16
bits)"

Loops usually appear in malware for these reasons:

Encrypt / decrypt network traffic - loop over each character in the string to send
Attempt to connect to C2 servers - loop over a list of servers
Perform a port scan - try to connect to port 1 - 65535
Perform a DDoS attack - keep sending malicious packets
Log keystrokes - check state for each key code 0 .. 92.

Looping methods:

Utilize a conditional jump to repeat execution.
Utilize loopxx instructions:

Examines the ecx register



Automatically decrements the ecx register
loopz, loopnz, loope, loopne

loopxx have a maximum jump range of 128 bytes.

You can determine what type of condition statement you are reviewing in assembly by checking
when conditional jumps are executed. If a conditional jump jumps past another comparison due
to a value being interpreted as false, it's a safe bet that you're looking at an and statement. The
opposite is true for an or statement - the first time something is true, you'll probably jump to
the rest of the code block.

Complex condition statements will most likely have multiple comparisons, conditional jumps, and
code blocks to be executed. It's recommended you keep a worksheet handy for reversing
condition statements so that you can sketch the logic into a flowchart.

Lastly, switch statements can be identified in assembly by the use of jump tables by the compiler.
A variable is usually evaluated for a specific range of values - if that value exists in they jump table
(an array of location to jump to) next assembly instruction will be to jump to that particular code
block within the jump table. This removes the need for multiple comparison statements, and
makes the assembly code easier to read. Switch statements will still evaluate the code blocks
below the one jumped to, so it's best for the programmer to include a break after each code
block within a switch statement.

API Patterns in Malware

Dynamic Linked Libraries (DLLs) are also a popular file type for malware authors. Unlike .exe files,
.dll files have the ability export multiple functions, and are not runnable on their own. DLLs have
no entry point, malicious .dll files usually have an exported function that is used as the entry
point given a specific set of arguments. Submitting a .dll into a sandbox usually won't provide
enough information to begin a more detailed analysis. We have to look further into .dll files to
determine how they are used in an infection.

Viewing a .dll in IDA, we can see the identify exports of a .dll - the functions the .dll
advertises for use. Most malware do not use the actual address of a function contained within a
.dll, they use the ordinal value. Ordinal values are an integer reference to a specific function
within a .dll. Malware authors commonly use these values to obfuscate their usage of the .dll,
making it more challenging for an analyst to decipher the relevance of the function.

A dropper is a family of malware where the rest of the files required to conduct further infection
of the target device is embedded within the executable. You can use these Windows API calls to
begin fingerprinting droppers:

FindResource
LoadResource
SizeofResource



LockResource
WriteFile
CreateProcess
CreateMutexA

We can extract embedded resources using PeStudio:

select resources > dump (RAW)

This is useful because IDA does not disassemble the resources by default. IDA disassembles the
executable before it runs, thus it will never see the outcome of the disassembled resource
because it views the resource as just regular data.

Malware can also be used to monitor a user's activities. These are common Windows APIs used by
malware authors to monitor keys, windows, and the clipboard:

GetKeyState
GetAsyncKeyState
GetWindowText
OpenClipboard
GetClipboardData
CloseClipboard

64-bit Code Analysis

32-bit malware is still the most prevalent, however, as 64-bit malware becomes more common,
here are the two types that have been seen the most in this family:

Browser Helper Objects for 64-bit Internet Explorer
Device Drivers (rootkits) for Windows x64

64-bit Windows can still run 32-bit Windows applications, however, using the WoW64 subsystem
(Windows on Windows). 32-bit applications can't leverage 64-bit DLLs, so they use 32-bit DLLs
stored in %SystemRoot%\Syswow64. 32-bit applications also access the registry hive differently,
using the 32-bit hive located under the registry "Wow6432Node".

Some differences exist when reading disassembled 64-bit code:

All registers have been renamed (E** -> R**)
There are eight (8) new general purpose registers (R8 - R15)
RSP not (EBP or RBP) is used as the frame pointer for function calls. This is due to the fact
that the stack size changes less frequently on 64-bit operating systems.
The RIP (instruction pointer) can now be used to reference memory locations
The common calling convention resembles fastcall - first four parameters for a function are
passed in RCX, RDX, R8, and R9



Summary

This about wraps it up for code analysis after disassembling a malicious binary. To start code
analysis, just remember these places and indicators for a good start:

Imported functions
Libraries
Referenced strings
Smaller functions called repeatedly
Smaller functions with a few system calls
Referenced resources

And always take advantage of previous behavioral analysis to lead the code analysis process.
You'll know what you want to see from the code based upon the behavioral analysis. Then, the
code analysis can provide you with further insight into the nature of the malware specimen.



1. application data

directory

common directory for malware to write to

because access generally requires only

user-level rights

2. attempt to

connect to C2

server

malware that loops over a list of servers

attempting to establish a connections

3. call instruction an instruction that transfers control to the

first instruction in a function

4. cdecl

convention

most common function calling convention;

the caller cleans up the stack

5. CloseClipboard Windows API call to close the clipboard

6. control variable variable(s) that are used to determine if a

loop exists

7. CreateMutexA Windows API commonly used by malware

writers to signify that a device has already

been infected; creates a mutex

8. CreateProcessW Windows API call to create a new

process; references to this function may

reveal other processes spawned by a

malware specimen

9. cs default segment register when fetching

instructions

10. data structure refers to the layout and representation of

information, and how we access and

manipulate that representation

11. direct

addressing

dereferencing the immediate value; usually

annotated by disassemblers with brackets;

ex. [0x410230]

12. dll library file intended to share code with

multiple programs; typically used to

export functions

13. dropper malware used to drop files embedded into

the executable onto the target device

14. ds default segment register for accessing

data with ESI and EDI registers

15. dword double word; 32-bits

16. eax accumulator register; used for addition,

multiplication, and return values

17. ebp - # how to reference a local variable of a

function using the frame pointer and an

offset

18. ebp register often used to reference arguments

passed into a function as well as the local

variables of a function; base pointer

19. ebp + # how to reference a parameter passed into

a function using the frame pointer and an

offset

20. ebx / edx generic registers used for various

operations

21. ecx counter register; commonly used for

looping

22. effective address the address of a data element, taking

into account offsets due to array

indexing and record accesses

23. eflags status and control flags, each flag is a

single binary bit

24. eip instruction pointer; points to the next

instruction to execute

25. encrypt / decrypt

network traffic

malware that loops over each

character in string before sending

across the network

26. esi / edi registers used for memory transfer

functions

27. esp stack pointer; used to point to the last

item on the stack

28. exports tab this tab in IDA displays the location of

the entry point of the executable; for

libraries or DLLs, this tab displays

multiple exported functions and their

location

29. fastcall convention function calling convention where

arguments are stored in registers; extra

arguments are then placed on the

stack; callee cleans up the stack

30. fast library

identification and

recognition

technology (FLIRT)

technology used in IDA to

automatically identify common libraries

used by an executable

31. FindResourceW Windows API call to determine the

location of a resource

32. first operand

addressing mode

register based addressing mode; using

a register as an argument

33. function epilogue occurs at the end of the function;

cleans up the stack and restores

registers

34. function prologue occurs at the start of a function;

allocates space for variables; saves

registers that will be reused in the

function body

35. GetAsyncKeyState Windows API call to determine if a key

is currently up or down, or if it was

pressed since the last call to this API

610.2: Reversing Malicious Code
Study online at quizlet.com/_7r84dd



36. GetClipboardData Windows API call to gather data from

the clipboard; malware authors use

this call to acquire usernames /

passwords being copy / pasted

37. GetKeyState Windows API call to retrieve the

status of a specified key

38. GetTempFileNameW Windows API function to create a

name for a temporary file; malware

often uses this API to name new files

written to disk

39. GetTempPathW Windows API call often used by

malware to create files names for

temporary files on disk

40. GetWindowText Windows API call to obtain the text of

a window's title bar

41. ida graph view pressing spacebar in IDA will present

this view

42. imports address

table (IAT)

displays the APIs used by the

program that are contained in external

libraries

43. inline function function declared inline using the

inline keyword or by being a member

function defined in-class; removes

overhead for entering or exiting the

function; hard to determine the

difference between inline functions

and original code block

44. ja (unsigned) true if both carry and zero

flag = 0

45. jb (unsigned) true if carry flag = 1

46. je / jz true if zero flag = 1

47. jg (signed) true if zero flag = 0 and sign

flag = overflow flag

48. jl (signed) true if sign flag != overflow

flag

49. jmp unconditionally jump to the label

(address) in the operand

50. jump table a list of addresses of each code

block; control is transferred to the

desired block by using the variable to

look up the address of the code block

in the jump table; primarily used for

compiling switch statements

51. jz jump if zero

52. lea load effective address into specified

register

53. leave instruction mov esp, ebp

pop ebp

54. linker a program that combines the object

program with other programs in the library,

and is used in the program to create the

executable code

55. LockResource Windows API call to obtain a pointer to a

resource

56. log keystrokes malware that loops to check the state for

each key code {0..92}

57. loop body code block that gets executed in a loop

58. loop

initialization

location where the starting value for a

loop control variable is assigned (usually

found outside the loop body)

59. loop update instructions that modify the control

variables during each loop iteration

60. object code the output of the compiler, after translating

the program

61. OpenClipboard Windows API call to get access to the

clipboard and ensure other applications

don't modify the clipboard data

62. ordinal alternative method to export and import

functions; numerical value that can be used

in place of a name; malware often exports

or imports only this value to make it more

challenging to decipher a function's

relevance

63. perform a port

scan

malware that loops trying to connect to

port 1- 65535

64. performing a

DDoS attack

malware that loops attempting to send a

large amount of packets to a target host

65. pointer a variable that contains the address of

some location in memory

66. push instruction an instruction usually used to push values

to the stack for use in an API call

67. qword quadruple word; 64-bits

68. ret return to the calling function

69. retn instruction pop eip

70. second

operand

addressing

mode

memory address based addressing mode;

using a memory address as an argument

71. ShellExecuteW Windows API call to facilitate command

execution

72. SizeofResource Windows API call to obtain the size of a

resource

73. source code human-readable code, not compiled



74. ss default segment register for accessing data wit the ESP register

75. stack typically used to store local variables in addition to parameters passed into a function

76. stdcall convention function calling convention used by WIN32 APIs; callee cleans up the stack

77. stopping conditions conditions used to determine if a loop should exit

78. strace monitors all the system calls made by a program

79. sysmon monitors system calls for registry and file-related activity

80. %systemroot%\Syswow64 where 32-bit DLLs are stored for usage in the WoW64 subsystem

81. test instruction implied AND instruction; tests to see if a register, usually EAX, is zero

82. third operand addressing

mode

immediate based addressing mode; using the immediate value as an argument

83. thiscall convention function calling convention; used in C++ code member functions; convention includes a reference to

"this" pointer; for Microsoft compilers, ECX holds the "this" reference - callee cleans up; for GNU

compilers, "this" is pushed onto the stack last and the caller cleans up

84. word the natural size for a unit of data; currently taught to be 16-bits

85. WoW64 acts as the emulator for allowing 32-bit applications to run seamlessly on a Windows 64-bit OS

86. WoW6432Node where the 32-bit compatible registry is located on a 64-bit Windows operating system



FOR610.3: Malicious Web and Document Files

Interacting with Malicious Sites and Infrastructure

In the past sections we've been examining malware isolated from the internet. Sometimes,
however, in order to fully examine a specimen and its capabilities, we need to interact with the
internet infrastructure that enables it.

Caution: you should attempt to conceal your identity and location as much as possible when
researching malicious infrastructure. Malware authors might be tracking who visits their site and
use your information to trace you back to your organization, or tag your IP address as an analyst
attempting to determine the source of an infection.

When conducting OSINT on a target website, you might run into a webserver that is explicitly
configured to determine if your browser is exploitable and attempt to infect your machine. If you
would like to gain more information about this webserver, and coax the server to attempt and
exploit, you could run a purposefully vulnerable browser in a lab environment and capture the
network traffic.

Proxy options that exist in order to expose an interaction between your browser and the target
webserver include:

Burpsuite
Fiddler

Alternatively, if you want to craft HTTP packets and spoof that you're using a browser to visit a
website, these tools are available:

wget
curl
Pinpoint
Scout
Thug (honeyclient)

Consider the following when investigating a compromised website suspected of hosting an
exploit kit:

What code as added to the compromised website?
What hostnames or IPs were involved in attacking the visitors?
What client-side software was likely targeted by the exploit?
What type of malware was likely installed on victims' systems?

WMIC is commonly used by malware authors to spawn processes outside of the context of the
current process they're exploiting. This allows the malware author to escape some limitations



that may exist for a child process that are imposed by a parent process.

You can carve out malicious files that were transferred in the exchange between a piece of
malware and malicious infrastructure using these tools:

Wireshark (Use File > Export Objects > HTTP)
CapTipper
NetworkMiner

Deobfuscating Scripts Using Debuggers

When encountering obfuscated Javascript, there are various methods to make the script human-
readable again. Notepad++ contains a couple of features that will reformat and minimize
unnecessary lines of code in a given piece of Javascript. These two tools are:

JSMin
JSFormat

There is also a Javascript beautifier available on REMnux called js-beautify. It can also be found at
http://jsbeautifier.org.

Commonly used Javascript functions to execute malicious actions include:

document.body.appendChild
document.parentNode.insertBefore
document.write
eval

There are methods for malware authors to defend themselves from being watched or
deobfuscated during execution. arguments.callee is a javascript built-in that allows a function
to reference itself. It's possible for a javascript function to attempt to detect if it has been
modified - this allows malware authors to exit execution upon failing to pass their own
checksums. arguments.callee can also be used as the decryption key for a function, any
alterations will break the script. It's best to use debuggers that won't alter the script, and Internet
Explorer provides a nice debugger that will place in-line breakpoints.

Deobfuscating Scripts Using Interpreters

In the previous section we utilized a browser's built-in debugging feature to run a script, set
breakpoints, and step through the code at each point in its execution. We can also extract
malicious scripts embedded in HTML or Adobe Reader files and run them in an interpreter
specifically designed to execute Javascript. Some commonly used Javascript interpreters are:

SpiderMonkey - Mozilla
CScript - Internet Explorer



V8 - Google Chrome

Often when deobfuscating a script that was embedded within a browser, we need to redefine
variables the script was attempting to use when within the context of the browser. With the tools
listed above, it is possible to write a header file that redefines specific variables that the script is
expecting, allowing the script to execute successfully. In REMnux there is an objects.js file that
will define commonly used objects for browser based Javascript - allowing us to debug
successfully if this file is included in a script's runtime.

It's best when downloading an embedded, malicious Javascript file that you save as much
metadata as possible from the original HTML file. This way, you can provide the metadata the
Javascript file is looking for to the interpreter. Sometimes the metadata of a web page is what
the Javascript uses as keys to decrypt, etc.

Obfuscation of scripts involves trickery to confuse analysts and security tools. In summary,
obfuscation has these attributes:

Unusual syntax of the code
Generation of script elements on-the-fly
External runtime dependencies
Detection of script modifications
Browser-specific implementations

There are several more tools available than just these interpreters that we can use to deobfuscate
malicious Javascript. Here's a list:

Kahu Security - free tools designed to run on Windows for decoding content and
deobfuscating malicious scripts
PhantomJS - headless browser designed to run and debug Javascript
Nightmare - another headless browser like PhantomJS
box-js - Javascript engine that can emulate a browser or Windows runtime environment
malware-jail - another Javascript engine like box-js

In summary:

Using standalone interpreters is sometimes faster or more convenient than using a
debugger.
You probably need to define objects for a malicious javascript excerpt in order to
emulate a browser environment.

Malicious PDF Document Analysis

PDF files are almost like HTML documents - well-structured, and you embedded different types
of scripts into them that will be executed on a target device. In the lessons provided in FOR610,
we extract embedded Powershell as well as Javascript from a PDF.



Different portions of a PDF are separated by objects. All text data, font info, or images are
stored in streams. For our exercise in this section, the malicious document contained a
Powershell script that was base64 encoded. It is possible to extract this manually by copy-
pasting, however, there exist tools that can automatically parse a PDF, provide a listing of all its
objects, and base64decode and output the contents of an encoded object. These tools include:

pdfid.py - performs an initial quick assessment of a PDF file for suspicious keywords and
dictionary entries
pdf-parser.py - parses a PDF file, locates specific objects ad displays their contents
base64dump.py - base64decode strings from PDF files
peepdf.py - a good alternative to pdfid.py and pdf-parser.py

Often Javascript embedded into a PDF is used for heap spraying. At runtime, the script engine
stores newly defined arrays on the heap. Malware authors declare each element of the array to
be a copy of the shellcode. Thus, when the application is exploited, the instruction pointer can be
pointed to a location in the heap that has a high likelihood of being the generated shellcode.

You might often find shellcode embedded into PDF files. The tools we already know how to use,
IDA and x32/64dbg have the ability to interpret shellcode and provide the assembly instructions
that they correspond to. A tool we can use to emulate shellcode is scdbg. scdbg expects
shellcode in its raw, binary form and will provide the output of the shellcode in a GUI.

Sometimes scdbg fails to emulate shellcode properly. In these situations, you'll need to provide a
stripped Windows executable for the shellcode to execute inside of. A useful tool to convert
shellcode to a .exe is shellcode2exe.py.

PDF files could also be password protected to prevent analysis. Because of this, you'll be able to
see the structure of the file, however, everything will be encrypted - you'll have to supply a
password to decrypt the contents. If you know the password, there are multiple CLI programs
you can use to decrypt a PDF:

qpdf
pdftk

Another complication of PDF analysis is an object that contains a stream in its dictionary, and
that stream embeds other objects. Object streams (/ObjStrm), as they're called, can be located
and parse by pdf-parser.py.

Other useful tools for PDF analysis:

swf_mastah.py - extracting Flash from PDF files
Origami PDF Framework
PDF Stream Dumper

In summary, PDF analysis can be wrapped into these salient points:



Look for risky or otherwise unusual objects.
Locate, extract, and decode code that would execute on the victim's system.
Several tools exist for analysis and extraction of embedded objects in malicious PDF
files.

Macros in Malicious Office Documents

Microsoft Office documents are a very common way to spread malware as they are the most
commonly used document file in a business. Microsoft Office documents allow adversaries to
embed macros in a file. The macros are written in Visual Basic for Applications (VBA) - a language
that supports powerful capabilities for interacting with the system.

olevba.py is tool that can be used to extract VBA macros from Microsoft Office documents
without relying on the Microsoft Office software suite. olevba.py can automatically parse
contents of Microsoft Office files, extract, and display any embedded macros.

Something to note about Microsoft Office documents - there are two document formats:

OLE2 - Object Linking and Embedding 2; legacy version - sometimes called Structured
Storage (SS) or Compound File Binary Format (CFBF)
OOXML - Office Open XML; well formatted and easier to read - less likely to contain
vulnerabilities; all file extension end in m:

.docm

.xlsm

.pptm

.dotm

Tools that enable you to examine the structure of OLE2 files are:

oledump.py
olecfinfo
oledir.py
olebrowse.py
SSview

Malware authors often obfuscate their malicious VBA scripts using the built-in function XORI to
decode the script at runtime. xor-kpa.py is a tool that can derive a XOR key from a ciphertext
given a piece of plaintext contained within the ciphertext.

oledump.py contains a plugin, plugin_http_heuristics, that will automatically locate URLs
embedded within obfuscated OLE2 files if the malware author is using common obfuscation
methods.

Sometimes dynamic analysis of VBA scripts is easier than static analysis, especially if the macro is
heavily obfuscated. You can do this by creating a new Microsoft Office document, acquiring the



VBA script embedded in the original malicious Microsoft Office document, and copy / pasting
the malicious VBA script into the macro editor of the new document. From here, you can set
breakpoints at different sections of the VBA code, allowing you to stop before it executes
completely. You can view all of the local variables and watch them change as you step through
the code.

All the tools mentioned previously search for VBA macro source code, however, before executing
VBA macros, Microsoft Office compiles VBA macros into p-code. Theoretically, a malware author
could generate p-code and embed it within a Microsoft Office document - the scanners
mentioned previously would never detect it. Luckily, we have a tool called pcodedump.py that
will locate and disassemble p-code for our analysis.

In summary:

VBA macros provide attackers with a convenient and powerful way to execute
malicious code on victims' systems
Macros can interact with the network, file system, and other aspects of the
environment.
Macros are embedded in OLE2 binary files and are supported by all Microsoft Office
versions in use today.
Some macros plainly reveal their functionality, others employ obfuscation or
trickery.

Malicious RTF Documents

Rich Text File (RTF) is a document format designed by Microsft and is a "method of encoding
formatted text and graphics for use within applications and for transfer between applications".
Malicious RTF files are written for Microsoft Word and, while they don't allow for the embedding
of macros, RTF files allow for arbitrary files to be embedded in RTF documents as objects using
version 1 of the OLE formate (OLE1) - sometimes referred to as the Package Object Server.

Malware authors take advantage of how Microsoft Word handles objects embedded in RTF files.
When Word opens RTF documents, it automatically extracts any embedded objects and stores
them in the %Temp% folder. From here, a malware author can embed a macro that will execute the
file stored in %Temp%. Malware authors can effectively RTF files to act as containers for malicious
code.

RTF files written by malware authors will usually contain \objects with \objdata. This data is
encoded, however, we can use a tool call rtfdump.py that can parse through RTF documents
and extract embedded objects.

In summary:

RTF documents are convenient carriers of other malicious files.
Look for embedded objects and anomalous content when assessing and RTF file.



Be prepared to locate, extract, and analyze shellcode:
Try emulating its executing for API-level visibility
Analyze its code with debuggers and disassemblers
Observe its effects using behavioral monitoring tools



1. /AcroForm pdf object designed to embed

interactive forms in pdf files; used by

malicious authors of pdf files

2. \aftnrestart rtf control word restarts endnote

numbering each section

3. appendChild this method appends a node as the last

child of a node; javascript built-in;

commonly used for malware obfuscation

4. app.setTimeOut javascript embedded in a PDF trick;

indirect way of launching a designated

function instead of executing directly

using eval; can be used to delay

execution until the document is fully

loaded

5. app.viewerVersion javascript embedded in a PDF; used to

identify the version of the PDF viewer

being used

6. arguments.callee javascript attributes some malware

authors use to reference the javascript

code itself; malware authors will attempt

to detect changes to the javascript code

in order to protect themselves being

watched during execution

7. AutoOpen a macro that runs when opening a

document that contains the macro

8. beautification reformatting malicious scripts in order to

read them easier; this is the first step in

deobfuscating malicious scripts

9. box-js javascript interpreter that will

deobfuscate and analyze malicious

javascript; provides a listing of all URLs

the script attempts to connect to; can

emulate browser environments

10. CapTipper specialized HTTP analysis tool written in

Python that will analyze a .pcap file and

carve all files transferred via HTTP

11. curl like wget; allows user to craft their HTTP

request

12. debugger this is a keyword that can be used in

Internet Explorer to set a breakpoint in

the middle of a script

13. document.getElementById returns the element that has the

ID attribute with the specified

value from an HTML document;

used by malware authors to

create dependencies within the

Javascript for specific HTML

elements

14. -EncodedCommand powershell option that

specifies that a specific

command is base64 encoded

15. eval this function evaluates or

executes an argument ;

javascript built-in ;commonly

used for malware obfuscation

16. fileinsight lightweight hex editor that has

many capabilities and plugins

useful for malware analysis

17. fs:[0x30] location of the pointer to the

process environment block in

every thread information block

18. generation number in pdf object specification, this

is the second number of an

object's definition

19. geteip a technique involving making a

`call` instruction in order to

have the eip pushed onto the

stack, and then immediately

calling pop in order to acquire

the value of eip

20. GoTo VBA branching instruction used

to obfuscate and confuse

analysts

21. headless browser browsers useful for

deobfuscating scripts; less-

specialized and stripped down

browsers that are primarily

used for malware analysis

22. heap spraying placing shellcode in numerous

locations of a program's heap

memory so that, when an

exploit occurs, no matter where

the instruction pointer lands it

will execute the shellcode

23. honeypot decoy servers or systems

setup to gather information

regarding an attacker or

intruder into your system

610.3: Malicious Web and Document Files
Study online at quizlet.com/_7re7d7



24. iframe tag that represents an inline-frame;

commonly used to inject malicious code

into a web response;

25. indirect

object

pdf objects that have a unique identifier and

can be referenced by other objects

26. insertBefore this method inserts a node as a child, right

before an existing child, which you specify;

javascript built-in; commonly used for

malware obfuscation

27. /JavaScript pdf keyword that usually is a strong

indicator the pdf is malicious

28. jmp2it rather than generating an executable out of

shellcode like shellcode2.exe, this tool

directly executes the shellcode located in a

specified file

29. js-beautify javascript beautifier available on REMnux

30. JSFormat notepad++ feature; inserts line breaks and

indentations to make Javascript easier to

read

31. JSMin notepad++ feature to get rid of extraneous

Javascript components such as comments

32. /Launch pdf keyword to execute a specified file

33. location.href javascript built-in to reference the URL of the

web page

34. NetworkMiner another specialized network analysis tool

that can extract files from HTTP sessions

35. \objdata rtf control word containing an object's object

data

36. \object rtf control word that specifies an object and

its data follows

37. object

number

in pdf object specification, this is the first

number of an object's definition

38. /ObjStrm a pdf stream object that contains a stream of

other embedded objects; can be used to

obfuscate and confuse analysts

39. OLE2 object linking and embedding 2; legacy

Microsoft Office file format; sometimes

called Structured Storage (SS) and

Compound File Binary Format (CFBF)

40. oledump.py CLI tool that allows you to examine the

structure of OLE2 files

41. olevba.py CLI utility that can automatically parse

contents of Microsoft Office files, extract,

and display embedded macros

42. OOXML Office Open XML; Microsoft Office file

format; easier to parse and less likely to

have vulnerabilities

43. /OpenAction pdf keyword that specifies what action an

application will take after opening a file

44. p-code this type of bytecode is generated when

Microsoft Office compiles VBA macro source

code

45. pcodedmp.py CLI tool that can locate and extract VBA

macro p-code embedded in Microsoft Office

documents

46. pdftk another CLI utility that can decrypt PDF files

given the correct password; doesn't work will

if a PDF file contains malformed objects

47. Pinpoint fetches a webpage and then enumerates and

analyzes its components to help identify any

infected files.; gives you various options

when making an HTTP request including

spoofing the user-agent string and referrer;

will not render any of the content.

48. process

environment

block

Windows operating system data structure

that contains information about a process

including the list of its DLLs that have been

loaded or mapping into the process's

memory

49. qpdf CLI utility that can decrypt PDF files given

the correct password

50. regular

expressions

the special metacharacters used to match

patterns of text within text files; commonly

used by malware authors to obfuscate

strings

51. /Root pdf keyword for a document's root

52. rtf rich text file; allows formatting of text and

inserting graphics; used by malware authors

to embed malicious objects in Word

documents - usually files

53. rtfdump.py cli tool to parse through RTF files and extract

embedded objects

54. scdbg shellcode emulator; expects shellcode in its

raw binary form

55. Scout uses the Pinpoint engine to download and

analyze webpage components to identify

infected files; works fine in 32-bit Windows;

has a built-in HTTP Request Simulator that

will render user-specified HTML files, catch

the resulting HTTP requests, then drop the

responses; includes the ability to screenshot

the webpage using PhantomJS (download

PhantomJS and copy the .exe to the same

folder)

56. streams pdf method of storing data such as text, font

definitions, and pictures



57. swf_mastah.py CLI utility that can extract Flash objects from PDF files

58. syncAnnotScan

/ getAnnots

javascript embedded in a PDF; used to enable the script to store some of its contents as annotations to allow it to

assemble itself on runtime

59. ternary

operator

used for one-line conditional statements; used to obfuscate code and confuse readers

60. thread

information

block

windows operating system data structure that contains information about the currently running thread

61. Thug python low-interaction honeyclient

62. tuple a type in Javascript that can contain multiple different values of different types; Javascript only assigns the last

element to reference the variable

63. vbaProject.bin the default name for macros store in Microsoft Office XML-documents

64. wget non-interactive network downloader

65. \windowcaption rtf control word used to set the caption text for the document window

66. wmic Windows Management Instrumentation Command Line Tool; commonly used by malware authors to escape

restrictions / limitations imposed by a parent process; spawns a completely new process under wininit.

67. Workbook_Open a macro that run when opening a spreadsheet that contains the macro

68. write this method writes HTML expressions or JavaScript code to a document; javascript built-in; commonly used for

malware obfuscation

69. /XFA another pdf object designed to embed interactive forms in pdf files for malicious purposes; XML Forms

Architecture

70. XORI VBA built-in function that can be used to XOR two strings together

71. xor-kpa.py CLI tool to automatically derive a XOR key by examining the plaintext and the ciphertext that contains the

encoded version of that plaintext

72. xorsearch cli tool designed to search a specified file for the presence of a specified string encoded using common

obfuscation techniques; can also be used to discover shellcode patterns



FOR610.4: In-Depth Malware Analysis

Recognizing Packed Malware

Malware authors use tools called packers to protect their creations from anti-malware products
and analyst tools. We, as malware analysts, need to understand how these packers work and be
prepared to examine packed malware specimens.

Here's a list of commonly used packers:

UPX
Armadillo
FSG
Themida

To detect if a malware specimen has been packed during your initial static analysis, look for these
common identifiers:A good way to detect if a malware specimen is packed is:

If you see very few readable strings
If your disassembler recognizes very few functions within the program
If your disassembler recognizes very few API calls within the program
If the entropy of the file is too high
Packer based signatures exist in the file

Tools that can be used to detect packed executables:

Bytehist
pescanner.py
Detect It Easy
Exeinfo PE
trid
pepack
packerid
pescan
ProtectionID
RDG Packer Detector
CFF Explorer

Getting Started with Unpacking

UPX can usually unpack malware that has been previously identified to be packed, however,
there are other tools available:



TitanMist
Ether

Sometimes we won't be able to unpack and extract malware with these automatic tools and, to
do our jobs effectively, we'll have to conduct all of our analysis manually.

One obstacle standing in our way is ASLR (address space layout randomization). This is a feature
for operating systems that allows operating systems to ignore an executable's base address and
randomizes address locations. This prevents hackers from being able to determine the location
of different resources within an executable, increasing security.

Below are two tools that can be used to disable ASLR for portable executables:

CFF Explorer
setdllcharacteristics

Disabling ASLR will ease the difficulty of our analysis, allowing us the ability to track down the
location of the unpacking code and the beginning of the unpacked, malicious executable.

So how do we go about acquire the malicious code that has been packed? We conduct a process
call dumping, allowing the unpacker to load the malicious executable into memory and then
using a tool to dump the running process into a file on disk.

Often the dumped file might be broken when we attempt to run it - probably because the entry
point of the PE is pointing to the unpacker code, but we need to begin at the unpacked code.
Usually the import address table (IAT) is also mangled, and the executable doesn't know how to
locate its resources.

Here are some tools aimed at dumping unpacked executables from memory to disk, as well as
reconstructing an executable's entry point and IAT:

Scylla
PE Tools
Universal Import Fixer
Imports Fixer

In summary, to begin unpacking malware, here are some important steps and things to
remember:

Disable ASLR on packed programs in order to make analysis easier.
Allow the malicious program to unpack itself; then dump it.
Dumped files might not be runnable because the entry point is broken.

Using Debuggers for Dumping

Using debuggers to unpack and extract packed executables is a safer and more precise way of



acquiring packed malicious code. In order to do this, we need to set a breakpoint at the end of
the unpacking code in the debugger. This is usually a JMP or CALL instruction pointing to the
unpacked code's Original Entry Point (OEP). You can also identify the ending of unpacked code
by looking for a location filled with lots of zeros and no instructions remaining after that.

After reaching unpacked code, in a debugger like x64dbg, we can search for newly existing
strings and intermodular calls to confirm that we have found the unpacked code. In most
debuggers, you can just right-click the assembly you're looking at and then search for these
things.

Debugging Packed Malware

Sometimes it's best for us to analyze the packed malware within a debugger and we don't want
to extract the code. In order to do this, we should let the malware run without any breakpoints.
View the malware's memory regions with the debugger, and search for memory regions that
have the "execute" flag set - this denotes these memory regions are allowed to execute
instructions on the CPU. Navigate to that particular memory region and search for interesting
strings or API calls (intermodular calls) like we did in the previous section. This will provide you
with locations of interest within the packed code that you can set hardware breakpoints at. We
want to set hardware breakpoints because those are less likely to be ignored than software
breakpoints upon restarting the process.

After setting our hardware breakpoint, we will proceed to debug the code and run until we stop
at the breakpoint. From there, we should be stopped within the unpacked code. This will allow us
to analyze the unpacked code without extracting it from the process.

Code Injection and API Hooking

Malware authors utilize code injection to hide extracted code into other processes. This makes it
harder for incident responders and analysts to locate malicious code. Malware also uses code
injection to implement rootkits. These user-mode rootkits hook into system APIs to interfere
with the normal flow of information within the infected process.

Here are some common Windows API calls used by malware authors to inject code into
processes:

CreateToolhelp32Snapshot
Process32First
Process32Next
EnumProcess
OpenProcess
CreateProcess
WriteProcessMemory
CreateRemoteThread



GetModuleHandle
GetProcAddress
CreateRemoteThread

A common method of injecting code into another process is:

Createtoolhelp32Snapshot -> Find Process Handle -> OpenProcess -> VirtualAllocEx ->
WriteProcessMemory -> CreateRemoteThread

Another method is to force another process to load a malicious .dll:

OpenProcess -> VirtualAllocEx -> WriteProcessMemory (write .dll location) ->
GetModuleHandle (find kernel32.dll) -> GetProcAddress (find LoadLibrary) ->
CreateRemoteThread (execute LoadLibrary with .dll location as an arguemnt)

User-mode rootkits usually use these API calls:

ReadProcessMemory
VirtualProtect
WriteProcessMemory

Malware Memory Forensics

Essentially this section is about conduct malware analysis on the memory image of an infected
system. Memory forensics can supplement code and behavioral analysis, and allows us to identify
forensically significant artifacts related to the host's active processes, their code and data,
network connections, open files, registry contents, etc.

Software utilized for capturing memory images includes:

WinPMEM
Comae Memory Toolkit (DumpIt)
KnTDD
BelkaSoft Live RAM Capturer

Other possible methods of capturing memory images including utilizing specialized hardware
tools. IEEE 1394 standard allows for direct memory access from FireWire devices, allowing us to
acquire a memory image without host OS intervention. It's also possible to capture the system's
hibernation file and convert it to a useable format for memory forensics tools.

If we have an infected virtual machine, we can just capture a snapshot of the virtual machine and
analyze its memory from there.

Here are a list of popular memory forensics tools:

Volatility Framework
Rekall



Redline



1. apihooks volatility module to detect with

processes and DLLs have been

modified with inline hooks

2. ASLR Address Space Layout

Randomization

3. call table hook replaces the address of the

targeted function in a table that

processes use to find the

function with the location of a

rootkit function

4. cleardb x64dbg command to delete all

analysis details

5. cmdline volatility module that will

display to command line

command used to invoke all

processes

6. CreateProcess Windows API call used to

create another process

7. CreateRemoteThread Windows API call to execute

injected code inside a targeted

process

8. CreateToolhelp32Snapshot Windows API call used to get a

listing of the currently running

processes

9. detect it easy signature-based scanner that

attempts to identify packed

malware samples

10. dlllist volatility module to list the

DLLs loaded into every process

on the infected host

11. dumping extracting an unpacked program

from an infected host's memory

12. dynamicbase flag a flag located in a PE's

DllCharacteristics field that

determines whether or not a PE

supports ASLR

13. entropy you can use this characteristic

14. EnumProcess Windows API call similar to

CreateToolhelp32Snapshot

15. ether web based tool that attempts to

automatically unpack malware

specimens

16. execute flag specific flag set for portions of

memory of a process; used to

track down unpack parts of

code in a process's memory

17. exeinfo PE another signature-based scanner like 'detect

it easy' that attempts to identify packed

malware samples

18. hardware

breakpoint

breakpoint that is more likely to remain after

the reloading of process; tied specifically to

a memory register

19. hooking intercepting system-level function calls,

events, or messages

20. impscan volatility module to examine a process in a

memory image and extract API name and

address information from it

21. inline hook involves patching the beginning of targeted

functions in memory of a compromised

process; forces process to execute a rootkit

22. intermodular

calls

typically equivalent to API calls; usually

revealed when code is unpacked

successfully

23. kdbgscan volatility module that attempts to detect the

OS profile

24. ldrmodules another volatility module used to detect

DLLs loaded into processes

25. malfind volatility module used to detect concealed,

injected code in a memory image

26. memdump volatility module that will dump the

contents of a process from a memory image

to a file

27. mshta.exe a program built into Windows for executing

HTML applications

28. OllyDumpEx useful plugin for x32/64dbg that allows a

user to dump the process currently being

debugged

29. OpenProcess Windows API call used to open a process

using its handle

30. original entry

point

the original location where the packed code

begins execution; the end of unpacking

code JMPs or CALLs this location

31. packers tools that compress, obfuscate, encrypt or

otherwise encode the malicious code

32. pescanner.py portable executable scanner that can detect

and flag entropy of packed malware

33. Powershell

ISE

an integrated scripting environment that

includes a text editor.

34. Process32First Windows API call used to start at a listing

generated by CreateToolhelp32Snapshot

35. Process32Next Windows API call used to iterate through a

listing generated by

CreateToolhelp32Snapshot

610.4: In-Depth Malware Analysis
Study online at quizlet.com/_7tubtr



36. ReadProcessMemory Windows API call used to read the first few bytes of a targeted function; allows a rootkit to save function

locations for future use

37. reg_export command line tool that is useful for extracting data from registry keys

38. rootkit software that can conceal malicious artifacts from the user of the infected system

39. scylla tool used to reconstruct the entry point and import address table of an unpacked, dumped malware

specimen

40. titanmist powerful framework for implementing your own unpack

41. upx open-source portable executable packer

42. VirtualAlloc Windows API call that allows a process to allocate, clear, and retrieve a pointer to space within the process's

memory

43. VirtualAllocEx Windows API call that allows a process to allocate, clear, and retrieve a pointer to space within another

process's memory

44. VirtualProtect Windows API call used to modify permissions on a targeted memory region to make sure it is writeable

45. volatility free, popular, and powerful toolkit for conducting memory forensics

46. WriteAllBytes powershell ISE command to save bytes of a variable to a file

47. WriteProcessMemory Windows API call to write specified contents to a designated memory area



FOR610.5: Examining Self-Defending Malware

Debugger Detection and Data Protection

Malware that's attempting to evade analysis is obviously going to work to avoid being debugged
by a malware analyst. For Windows executables, here are some common API calls used by
malware to detect if it's being debugged:

IsDebuggerPresent
CheckRemoteDebuggerPresent
NtQueryInformationProcess
ZwQueryInformationProcess
OutputDebugString

All of these API calls can be fooled by debuggers today, including x64/32dbg, by masking the
expected response for the API calls to fool the process into assessing that it isn't being
debugged. With all that said, be on the watch out for malware that attempts to check its Process
Execution Block (PEB) directly, located at FS:[30h]. There is a 1-bit field called BeingDebugged
that will identify that a process is currently being debugged, and malware authors attempt to
check this rather than using the APIs listed above.

Some malware attempts to also conduct time analysis in order to determine if its running too
slowly. Here are the common API calls that malware uses to detect it's being ran slowly within a
debugger:

GetTickCount
GetLocalTime
GetSystemTime
NtQuerySystemTime

Malware can also use the assembly instruction RDTSC (Read Time-Stamp Counter) to
determine how many ticks have passed since the system booted up. This can be used to access
hardware values in order to avoid using the API calls above for time analysis.

Changing gears, let's talk about string obfuscation. Malware authors want to protect the strings
they use from malware analysts as un-obfuscated strings can provide an analyst information that
reveals the capabilities of the malware specimen. Here are some tools that can automatically
detect the obfuscation method used to obfuscate strings within a malicious binary:

XORSearch
brxor.py
brutexor.py
bbcrack.py



xorBruteForcer.py
NoMoreXOR.py
xortool
unXOR
Kahu tools

Another technique malware authors use to obfuscate strings are by creating stack strings.
Malware authors will create an array of characters of the string they intend to use, and then build
the final string in a buffer at runtime. This prevents string analyzers from finding the strings in the
final binary, and also keeps strings that are intended to be used out of the .data section of the
portable executable.

Tools that are able to un-obfuscate stack strings are:

stdeob.pl
FLOSS (FireEye Labs Obfuscated Strings Solver)

Unpacking Process Hollowing

Process hollowing is when malware launches a process in a suspended state, deallocates the
memory containing that process's code, and replaces the process with the code lf a malicious
program.

Here are a list of Windows API calls used by malware authors to conduct process hollowing:

Create Process
NtUnmapViewOfSection
ZwUnmapViewOfSection
WriteProcessMemory
ResumeThread

Malware authors often use process hollowing in order to conceal malicious code in what would
normally look like a legitimate process.

In this section we learned:

How process hollowing works and the Windows API calls involved.
How to debug a malware specimen that attempts to conduct process hollowing and
dumping its unpacked code to a file.
How malware authors conceal API calls and avoid including them the Import
Address Table (IAT).

Detecting the Analysis Toolkit

Malware authors obviously want to protect their malware from being analyzed and reverse



engineered. Here are a couple of methods, summarized, that malware authors use to detect their
environment to determine if it's worth infecting.

Looking for Windows applications that end users will have installed.
Looking for signs that applications like Wireshark, Process Hacker, or IDA are
installed.
Looking for specific hardware components to detect if the environment is
virtualized.
Looking for registry keys associated with VMWare Tools.
Looking for:

Contents in the clipboard.
Number of CPU cores.
Is the mouse cursor moving?
Is the hard disk reasonably large?
Does the uptime make sense?

Malware authors also try to trigger on user-interaction events to detect if the malware is within a
sandbox. An example is using hooks to capture mouse interaction with a window, attempting to
detect the press and depress during a click. This is accomplished by using the Windows API:
SetWindowsHookExA.

Handling Misdirection Techniques

Malware can attempt to misdirect us by throwing an exception in order to hide its true entry
point. The Structured Exception Handling, provided in portable executables, allows a
programmer to define exception handling functions for a program. There are two types of SEH:

    * Frame-based exception handling (32-bit programs; implemented in a linked list)

    * Table-based exception handling (64-bit programs; compiler creates a table and installs th

It's fairly simple to track down the newly installed exception handler and watch it unpack the
code, however, there are other methods. Thread Local Storage (TLS) callback functions allow
the malware author to execute code before the program starts. TLS callbacks allow malware
authors to create code that will be executed even before the Entry Point. Debuggers usually
automatically execute TLS callbacks before pausing at the Entry Point, leading to premature
execute of the malicious code.



1. 0xcc hex value that corresponds to

opcode INT 3; malware authors

check for this in order to

determine if someone set a

software breakpoint

2. BlockInput Windows API call used to block

input

3. CreateProcessA Windows API call that allows a

program to launch another

process

4. FindWindow Windows API call used to find

windows that are open; used by

malware authors to detect if

debuggers are open.

5. Frame-based SEH keeps track of exception-handling

records (structures) using a linked

list called the SEH chain; hosted

at FS:[0]

6. GetCursorPos Windows API call to determine if

the mouse has moved recently;

malware authors use this to see if

the host they're on is real

7. GetModuleHandleW Windows API call to locate a

handle to a .dll; used by malware

authors to detect the existence of

anti-virus software

8. GetProcAddress Windows API call to get the

procedure address of a function

exported from a DLL

9. IsDebuggerPresent Windows API call used to read

the PEB to determine if the

debugger bit is set

10. KdDebuggerEnabled Windows API call to check for the

existence of a kernel debugger

11. LoadLibraryW Windows API call to load a DLL

into the process space

12. NtUnmapViewOfSection Windows API call to deallocate

virtual memory of a process

13. pe_unmapper tool used to post-process file

dumps to make rebasing and

conduct other tweaks of a PE's

virtual to physical memory

mapping

14. process hollowing malware launches a process in a

suspended state, deallocates the

memory containing that process's

code, and replaces the process

with the code of a malicious

program

15. RegOpenKeyExW Windows API call used to open

registry keys for reading; malware

authors utilize this to detect the

existence of virtual machine registry

keys

16. RtlDecompressBuffer Windows API to decompress data

within a process's buffer; can be

used to unpack code

17. scyllahide x64/32dbg plugin that allows a

malware analysis to cloak the

presence of a debugger from the

malware specimen

18. SetWindowsHookExA Windows API call to hook user

interaction with Windows; malware

authors use this to detect a sandbox

environment

19. stack strings the storage of a string within a

program in an array of characters,

making it harder to piece together to

final string

20. strdeob.pl tool that disassembles a malware

specimen and attempts to rebuild

stack strings

21. Structured Exception

Handling

a mechanism for graciously handling

errors; malware authors abuse this

to misdirect the analyst

22. thread local storage

(TLS)

allows each thread to have its own

copy of data; allows malware

authors to execute callback

functions before the debugger

reaches the Entry Point

23. VirtualProtect Windows API call used to modify

the permission of a memory page;

used by malware authors after

unpacking code to prepare a page

for execution

610.5: Examining Self-Defending Malware
Study online at quizlet.com/_7uem7l


